Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing

نویسندگان

  • Xin Gu
  • Yan Yan
  • Scott J Novick
  • Amanda Kovach
  • Devrishi Goswami
  • Jiyuan Ke
  • M H Eileen Tan
  • Lili Wang
  • Xiaodan Li
  • Parker W de Waal
  • Martin R Webb
  • Patrick R Griffin
  • H Eric Xu
  • Karsten Melcher
چکیده

AMP-activated protein kinase (AMPK) is a central cellular energy sensor that adapts metabolism and growth to the energy state of the cell. AMPK senses the ratio of adenine nucleotides (adenylate energy charge) by competitive binding of AMP, ADP, and ATP to three sites (CBS1, CBS3, and CBS4) in its γ-subunit. Because these three binding sites are functionally interconnected, it remains unclear how nucleotides bind to individual sites, which nucleotides occupy each site under physiological conditions, and how binding to one site affects binding to the other sites. Here, we comprehensively analyze nucleotide binding to wild-type and mutant AMPK protein complexes by quantitative competition assays and by hydrogen-deuterium exchange MS. We also demonstrate that NADPH, in addition to the known AMPK ligand NADH, directly and competitively binds AMPK at the AMP-sensing CBS3 site. Our findings reveal how AMP binding to one site affects the conformation and adenine nucleotide binding at the other two sites and establish CBS3, and not CBS1, as the high affinity exchangeable AMP/ADP/ATP-binding site. We further show that AMP binding at CBS4 increases AMP binding at CBS3 by 2 orders of magnitude and reverses the AMP/ATP preference of CBS3. Together, these results illustrate how the three CBS sites collaborate to enable highly sensitive detection of cellular energy states to maintain the tight ATP homeostastis required for cellular metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AMP-activated protein kinase – not just an energy sensor

Orthologues of AMP-activated protein kinase (AMPK) occur in essentially all eukaryotes as heterotrimeric complexes comprising catalytic α subunits and regulatory β and γ subunits. The canonical role of AMPK is as an energy sensor, monitoring levels of the nucleotides AMP, ADP, and ATP that bind competitively to the γ subunit. Once activated, AMPK acts to restore energy homeostasis by switching ...

متن کامل

AMPK and the Atrial Response to Metabolic Inhibition.

SEE PAGE 47 A MP-activated protein kinase (AMPK) is a molecular energy sensor that is essential to the stress response in the heart (1). AMPK is activated during energy imbalance, when the ADPor AMP-toATP ratio increases. Because few proteins have adenine nucleotide binding domains, the activation of a protein kinase, which phosphorylates numerous downstream proteins, amplifies the energy stres...

متن کامل

The Effect of Eight Weeks Aerobic and Resistance Training on AMP-Activated Protein Kinase (AMPK) Gene Expression in Soleus Muscle and Insulin Resistance of STZ-Induced Diabetic Rat

Background: AMPK regulation is one of biggest target in T2D and metabolic syndrome research. Therefore, the present study is aimed to investigate The effect of 8 weeks aerobic and Resistance training on AMP-activated protein kinase (AMPK) gene expression in soleus muscle and insulin resistance of STZ-induced diabetic rat. Methods: The research method of present study was experimental. For this...

متن کامل

Differential regulation by AMP and ADP of AMPK complexes containing different γ subunit isoforms

The γ subunits of heterotrimeric AMPK complexes contain the binding sites for the regulatory adenine nucleotides AMP, ADP and ATP. We addressed whether complexes containing different γ isoforms display different responses to adenine nucleotides by generating cells stably expressing FLAG-tagged versions of the γ1, γ2 or γ3 isoform. When assayed at a physiological ATP concentration (5 mM), γ1- an...

متن کامل

AMP-activated protein kinase: a cellular energy sensor with a key role in metabolic disorders and in cancer.

It is essential to life that a balance is maintained between processes that produce ATP and those that consume it. An obvious way to do this would be to have systems that monitor the levels of ATP and ADP, although because of the adenylate kinase reaction (2ADP↔ATP+AMP), AMP is actually a more sensitive indicator of energy stress than ADP. Following the discoveries that glycogen phosphorylase a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 292  شماره 

صفحات  -

تاریخ انتشار 2017